Bio-ethanol production

from sugar- and starch, cellulose containing feedstock

Ir. Ywe Jan Franken
Contents

1. Feedstock types
2. Feedstock examples
3. Production potentials
4. Material pretreatment
5. Fermentation
6. Distillation
7. Uses
8. Bio-ethanol projects
Feedstock: types

- Sugar
- Starch
- Cellulose

(starch granules)
Feedstock types

Cellulose fibrils in plant cell wall (TEM)

polymers of beta glucose

Glucose monomer
Feedstock: examples

- Sugar cane
- Corn
- Cassava
- Sugar palm
- Sugar beet
- Sweet Sorghum
- Sweet potato
- Bananas
- Coffee residues
- Wood
Production potentials

1 kg of sucrose \rightarrow 0.52 liters of ethanol (≈ 12.6 MJ)

<table>
<thead>
<tr>
<th>Feedstock</th>
<th>Yield</th>
<th>Ethanol yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugar palm</td>
<td>20 ton sucrose /ha/year</td>
<td>≈ 10000 liters/ha/year</td>
</tr>
<tr>
<td>Cassava</td>
<td>25 - 60 ton/ha per year</td>
<td>≈ 3750 - 6000 liters/ha/year</td>
</tr>
<tr>
<td>Sugar cane</td>
<td>40 - 75 ton raw sugar cane/ha/yr</td>
<td>≈ 2800 - 5250 liters/ha/year</td>
</tr>
<tr>
<td>Sweet sorghum</td>
<td></td>
<td>≈ 2500 – 4000 liters / ha/ year</td>
</tr>
<tr>
<td>Sugar beet</td>
<td>60 ton/ha/year</td>
<td>≈ 5700 liters/ha/year</td>
</tr>
<tr>
<td>Corn</td>
<td>5 ton/ha/year</td>
<td>≈ 2050 liters/ha/year</td>
</tr>
<tr>
<td>Wheat</td>
<td>4 ton/ha/year</td>
<td>≈ 1560 liters/ha/year</td>
</tr>
</tbody>
</table>
Cassava

- 25 ton/ha per year
- 150 liter etanol/ton
- 3.750 lts etanol/ha por year

Evaluation of efficiency of bioethanol production from different cassava varieties
Sweet sorghum

Sugar beet

2500-5700 liter/ha/year
Sweet potato ethanol

- 45 ton/ha per year
- 150 liter ethanol/ton
- 6750 lts etanol/ha per year

other root crops

* Xanthosoma y Violaceum
Banana

- No need for mechanisation
- 50 kg/plant
- 67 ton/ha per year
- 3,350-7,000 liter ethanol/ha per year
Ethanol production

- (Hydrolisis)
- Fermentation
- Distillation
- Drying
Hydrolisis

• The cellulose molecules are composed of long chains of sugar molecules. In the hydrolysis process, these chains are broken down to free the sugar, before it is fermented for alcohol production.

• There are two major cellulose hydrolysis (cellulolysis) processes: a chemical reaction using acids, or an enzymatic reaction.
Fermentation

- The chemical equation below summarizes the fermentation of glucose, whose chemical formula is $C_6H_{12}O_6$.

- One glucose molecule is converted into two ethanol molecules and two carbon dioxide molecules:

$$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$$
Fermentation

Conventional Ethanol Production Process

- Barley
- Rye
- Milo
- Corn
- Wheat
- Tapioca

Grinding

Slurry Tank

Jet Cooker

- Water
- >100 °C
- 5-8 min.

Thermo-stable Alpha Amylase

Liquefaction

Glucoamylase

Saccharification

60 °C

8-10 hrs. (optional)

Secondary Liquefaction

- 95 °C
- ~ 90 min.

Yeast

Fermentation

Alcohol Recovery

Distillation & Dehydration

Storage Tank

DDGS

pH adjustment steps are not shown
Fermentation: Colombia
Distillation & Ethanol drying

Distillation of 1000 liter of 10 v/v [%] produces about 100 liter of ethanol in the following forms*:

<table>
<thead>
<tr>
<th>Liters production</th>
<th>Vol [%]</th>
<th>Liters pure EtOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>75,5</td>
<td>50</td>
<td>37,7</td>
</tr>
<tr>
<td>37,7</td>
<td>70</td>
<td>26,4</td>
</tr>
<tr>
<td>37,7</td>
<td>95</td>
<td>35,8</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

(*based on field data John Loke)
Uses for ethanol

Hydrous ethanol
- Engine fuel (flextek → > 60 vol %)
- Cooking stoves
- Gelfuels

Anhydrous ethanol
- Blends with gasoline (e.g. E85)
- Blends with diesel
- Direct use in cars
- Stoves
Flextek

-东风汽车公司*

65 % ethanol &
35% water

Dongfeng Motor Corporation (China)
Small scale bioethanol production

Rural communities

↓

Consortium of bio-ethanol producers

↓

Total land for energy crops
Up to 100 ha.

↓

Micro plants: 1,000 – 2,000 liters/day (50%-99,5%)

↓

Central plant for anhydrous ethanol (99,5%)
Composición del fruto del café
Coffee Cherry

- Exocarpio (pulpa 42%) - pulp
- Mesocarpio (mucilago 16%) - mucilage
- Endocarpio (pergamino 4%) - parchment
- Agua 20% (water)
- Espermodermo (película plateada) - silver skin
- Endospermo (semilla 18%) - seed

COOPEDOTA
Innovative technology to enable rural entrepreneurs to access markets for bio-energy
Thank you for your attention.

Questions?